生物质燃料快速热解液化
世界各国通过反应器的设计、制造及工艺条件的控制,开发了各种类型的快速热解工艺。
(1)旋转锥式反应工艺,荷兰Twente大学开发。生物质颗粒与惰性热载体一起加入旋转锥底部,沿着锥壁螺旋上升过程中发生快速热解反应,但其最大的缺点是生产规模小,能耗较高。以德国松木粉为原料,反应温度600℃,进料速率34.8kg/h的条件下,液体产率为58.6%。
(2)携带床反应器,美国Georgia 工学院(GIT)开发。以丙烷和空气按照化学计量比引入反应管下部的燃烧区,高温燃烧气将生物质快速加热分解,当进料量为15kg/h,反应温度745℃时,可得到58%的液体产物,但需要大量高温燃烧气并产生大量低热值的不凝气是该装置的缺点。
(3)循环流化床工艺,加拿大Ensyn工程师协会开发研制。在意大利的Bastardo建成了650kg/h规模的示范装置,在反应温度550℃时,以杨木粉作为原料可产生65%的液体产品。该装置的优点是设备小巧,气相停留时间短,防止热解蒸汽的二次裂解,从而获得较高的液体产率。但其主要缺点是需要载气对设备内的热载体及生物质进行流化,最高液体产率可达75%。
(4)涡旋反应器,美国国家可再生能源实验室(NREL)开发。反应管长0.7m,管径0.13 m,生物质颗粒由氮气加速到1 200m/s,由切线进入反应管,在管壁产生一层生物油并被迅速蒸发。目前建成的最大规模的装置为20kg/h,在管壁温度625℃时,液体产率可达55%。
生物质颗粒燃料混烧、气化发电技术
“生物质颗粒燃料直燃发电技术”这篇文章分析说明了生物质颗粒燃料直接燃烧用于发电技术,而电厂用生物质颗粒燃料作为燃料的时候还有混烧和气化的方式。接下来,吉盛新能源就给大家再来分析生物质颗粒燃料混烧、气化的发电技术。
生物质颗粒燃料混烧发电技术
生物质是可再生资源中与煤的理化特性最为接近的一种,因此利用生物质颗粒燃料与煤进行混烧发电是合理利用生物质资源、减少煤燃烧带来污染的有机结合。生物质颗粒燃料的掺混比例理论上可达到80%,且生物质与煤混合燃烧发电既解决了常规能源的不可再生及短缺问题,又克服了生物质资源季节性变化导致电厂运行不稳定的难题。生物质和煤混合燃烧发电技术经济性较好,规模灵活,可充分利用燃煤电厂的原有设施和系统;根据生物质资源的丰富程度,调整混烧生物质的比例,减少原料供应风险,保证电厂顺利运行,具有较好的发展前景。该技术可用于电厂、工业锅炉等各种利用循环流化床锅炉的行业,与低热值的煤混烧时一,锅炉的热利用率与烧煤相比,热利用率可提高10%左右,