- 发布
- 北京派客动力科技有限公司
- 电话
- 010-58204501
- 手机
- 18640165288
- 发布时间
- 2023-04-29 02:27:39
数据治理让数据更安全
这是一个很现实也很棘手的问题。大家都知道数据安全的重要性,都要做数据安全,数据治理标准价格,也知道数据安全的几种思路方法,然而真正要做的时候,却发现根本无从下手,只能参考其它同类企业,人家采购了什么,自己就采购什么,或者监管机构要求做什么,数据治理标准,就采购什么。至于数据安全软件买来怎么用,数据治理标准服务,或者究竟能派上多大用场,没人能说得清。其实,造成这种局面的本质原因就是企业对自身的数据缺乏认知,数据治理标准公司,解决了数据认知问题,数据安全的落地便是水到渠成的了。所以,与其谈论该如何做数据安全,不如谈谈该如何提升数据认知能力。
数据治理多种异构数据源支持
具有多种异构数据源支持,一个脱敏规则可应用于不同的数据源,可对结构化数据、半结构化数据以及非结构化数据进行脱敏处理。例如:可在excel、TXT、Oracle、Hadoop等数据源上直接引用。脱敏后的数据完全不落地分发,提供库到库、文件到库、库到文件、文件到文件等方式,无需在生产系统或本地安装任何客户端。
数据治理数据形态
作为数据安全工作者,了解企业自身数据的步就是数据形态的认知。数据体量有多大,是TB、PB还是ZB级?哪些是结构化数据、哪些是半结构化数据、哪些是非结构化数据?这些数据都存储在哪里,企业都用到了哪些种数据库,是传统的关系型数据库、Mpp数据库、K-V数据库还是基于Hadoop的数据库?这些数据的增量情况如何等等,都属于数据形态的范畴,都需要梳理了解。