- 发布
- 北京恒泰正宇科技有限公司
- 品牌
- 冠通
- 容量
- 见详情
- 型号
- 见详情
- 放电率
- 见详情
- 起订
- 10只
- 供应
- 300只
- 发货
- 3天内
- 电话
- 15810034631
- 手机
- 15810034631
- 发布时间
- 2024-02-23 10:52:17
冠通电池产品特性:
1、免补水、维护简单
采用特殊设计克服了电池在充电过程中电解失水的现象,电池在使用过程中电液体积和比重几乎没有变化,因此电池在使用寿命期间完全无需补水,维护简单。
2、密封安全、安装简单
电池内没有流动的电液,电池立式、侧卧安装使用均可,无电液渗漏之患,而且在正常充电过程中电池不会产生酸雾。因此可将电池安装在办公室或配套设备房内,而无需另建专用电池房,降低工程造价。
3、使用寿命长
采用了耐腐性良好的铅钙合金板栅,在25℃的环境温度下,正常浮充寿命可达10年以上。
4、高功率放电性能好
采用了内阻值很小的优质极板和玻纤隔板,而且装配较紧,使得电池内阻极小。在-40℃~60℃温度范围内进行大电流放电,其输出功率比常规电池可高出15%左右。
5、安装使用方便
电池出厂时已经完全充电,用户拿到电池后即可安装投入使用。
③电池方式
市电中断或指标超出规定容限时,UPS系统将自动转换为电池方式。在蓄电池方式下,各单机UPS中的蓄电池为逆变器提供应急DC电源,各逆变器继续运行,不间断地为负载供电。各单机UPS的逆变器并联运行,均分负载。如果市电未能恢复,蓄电池将一直放电到逆变器允许的最低输入电压等级。此时,每个单机UPS将发出“2min后关机”的告警。如果此时旁路电源可用,系统将转换到旁路方式而不关机。如果蓄电池放电过程中的任意时间,市电输入电源恢复可用,系统就转换到正常方式,原来蓄电池承担的逆变器的输入功率逐渐由整流器承担,同时给蓄电池充电。由于蓄电池再充电需要较大电流,整流器启动后开始时可能会进入限流工作方式。
④节能方式(ESSM,Energy Saver System Mode)
节能方式是指市电电源经静态旁路开关直接为关键负载供电。运行在节能方式时,如果市电电源出现异常情况,就自动转换到正常方式。当旁路电源电压或频率超出预定的范围时,系统就转换到蓄电池方式,然后转换到正常方式,由逆变器为负载供电,典型的转换时间为2ms。从节能方式向正常方式的所有的转换均先转换到蓄电池方式,然后
再转换至双变换方式。当市电受到严重*时,系统从ESS方式转换到双变换方式并要在双变换方式运行1h(可编程),1h后再回到ESS方式。如果在双变换方式运行1h周期内,又检测到市电严重*,则此1h记时将重新开始。
⑤可变模块管理系统方式(VMMS,Variable Module Management System)
在可变模块管理系统方式下,UPS与传统的双变换UPS工作相同。但UPS根据负载的大小,有选择地将负载移到少数的单机UPS中,以保证单机UPS的负载率较高,效率较高。当一个单机UPS被设置为VMMS方式时,此单机UPS将停止开通逆变器和整流器,但使其输出接触器闭合,以保持其输出电压与负载母线电压相同并与之锁相。在此方式下,此单机UPS监视重要负载母线,并保持其输入接触器闭合,在关键负载母线出现*和有阶跃负载时,此单机UPS立即返回运行,为负载供电。在VMMS方式中,单机UPS可用的最大功率被限制到单机UPS额定功率的80%,如果负载超过了此极限,则需增加单机UPS,以承担增加的负载。在市电严重*时,UPS将转换到双变换正常方式,所有的单机UPS运行1h,此1h终了时,UPS将自动转换回VMMS方式。如果在此1h内有出现市电严重*,则1h定时器将重新启动,UPS再重新开始在正常方式运行1h。
3 UPS冗余并机基本工作原理
(1)正常运行状态(见图1)图1中,负载由UPSA和UPSB的整流器——逆变器来供电,同时向各自的电池组充电,每台UPS的逆变器各带50%的负载运行。
(2)UPS在线维护(见图2)
图2中,当其中一台UPS故障时(例如UPSA),会自动退出运行,由剩下的一台UPS带100%负载运行。对故障的UPS可通过断开其Q1、Q2、Q3、Q4和Q5等隔离开关进行安全地维修,维修之后再投入运行,其状态如上所述。
即使在UPS没发生故障时,也可利用这种状态对其内部进行维护保养,例如:清扫灰尘、紧固联接件、检测或更换电池等。
(3)UPS冗余并机方案图(见图3)
4 并联冗余UPS系统的同步
(1)同步信号的选择
一般来说,因为各单机UPS的输出均同步于其旁路电源,如果各单机UPS的旁路电源是同一个市电电源,各单机UPS就会自然同步运行。但考虑市电停电时各单机UPS将同步于各自内部的晶体振荡器,在这种情况下就不会自然同步了。为了保证在任何情况下各单机UPS都能同步运行和负载均分,常常采用以下同步方法:
①主从同步
指定其中一台单机UPS为主UPS,其余的为从UPS。在正常情况下,有市电时主UPS同步于市电,无市电时同步于自己的内部晶振;所有“从UPS”(可编号为1、2、3……)都同步于主UPS。如主UPS故障,1号“从UPS”自动变为主UPS。以此类推,2号、3号……UPS也可为主UPS。
②无主从同步
即不指定主UPS,任何一个单机UPS都可以为主UPS,也可以为从UPS。一般按开机情况随机确定主UPS,例如哪一台先启动完毕,即为主UPS,此主UPS故障时的替代方法同上述方法。
(2)锁相环同步
为了使单机UPS的逆变器输出电压与同步信号(旁路电源电压)的频率和相位相同(同步运行),需要一种装置用于检测逆变器输出电压和旁路电压电源的相位差,并将它们变为电压信号去控制逆变器的相位和频率,使逆变器与旁路电压同步,这种装置就是锁相环。锁相环是由鉴相器(PD)、低通滤波器(LPF)和压控振荡器(VCO)组成的(见图4)。
冠通电池维护保养:
月度保养
1.全面清洁,保持外壳、端子的干净整洁及排气孔的畅通;
2.检查壳体有无变形,端子是否腐蚀变色,是否漏液;
3.测量和记录环境温度、电池外壳温度和极柱温度;
4.测量和记录电池组的总电压,充电电压发生漂移或环境变化应及时调整充电参数。
季度保养
1.重复月度保养的各项;
2.测量和记录单只电池浮充电压、浮充电流等参数,并及时调整;
3.检查连接部件是否松动,如有松动应紧固螺丝;
4.对电池进行均衡充电,充电时间24H。
年度保养
相器用于比较输入信号Ui(如旁路电源电压)和从压控振荡器反馈回来的输出信号Uo的相位,鉴相器的输出为正比于两个信号的相位差的误差电压信号Ud。低通滤波器用于衰减Ud中的高频分量和噪声,提高抗*能力,输出控制电压Uc。压控振荡器是输出频率受控制电压Uc控制的振荡器。当控制电压Uc=0时,其输出频率固定不变,控制电压Uc≠0时,振荡器的输出频率随控制电压Uc而变化。
在锁相环中,如果压控振荡器的频率与同步信号的频率差异在规定的范围内,鉴相器输出的误差信号经低通滤波器后,可控制压控振荡器的频率和相位向同步信号靠拢,当压控振荡器的频率与同步信号的频率完全相同,而且相位差达到恒定时,锁相环进入锁定状态。
5 并联冗余UPS系统的负载均分
在单机UPS系统中,只要旁路电源可用,逆变器总是与旁路电源同步,因此当逆变器故障时,可以通过静态开关不间断地将负载转换到旁路电源。
在并联冗余UPS中,每个单机UPS都与其旁路电源同步,由于各单机UPS的旁路电源是同一个市电电源,各单机UPS就会自然同步运行。但各单机UPS相位还会有微小的变化。为了保证各单机UPS之间均分负载,必须保证各单机UPS输出电压的频率和相位上准确的匹配。为此,通常各单机UPS之间需要通信,进行必要相位调节。
先进的UPS采用*并联技术,各单机UPS之间不需要通信。每个单机UPS只需要监视自己的输出功率,根据输出功率的变化情况进行调节,保持与其他单机UPS同步运行和负载均分。*并机的原理是利用并联的单机UPS之间的相角差与每个单机UPS所承担负载的关系,进行相位调节的。例如,两个并联的单机UPS的输出波形匹配时,它们将均分负载。如果一个单机UPS波形超前另一个单机UPS,它将承担较多的负载,而另一个单机UPS承担比例较小的负载。两个单机UPS之间的负载分配对两单机UPS的相角差非常灵敏,1度的相角差将会引起50%的负载不平衡。在*并机UPS系统中,每个单机UPS都监视自己的输出功率,并跟踪从一个周波到下一个周波输出功率的变化,两个相邻周波的功率差称为ΔP。如果一个单机UPS的ΔP增加,表明该单机UPS的相角超前于另一个单机UPS,就需要稍微降低其输出频率,进行补偿。这种频率调节一般在几个毫赫兹(milliHertz)的数量级。如果一个单机UPS的ΔP减少,表明该单机UPS的相角滞后于另一个单机UPS,就需要稍微提高其输出频率,进行补偿。在稳态运行中,各单机UPS的ΔP为零,均不调节它们的输出频率。在突加和突减负载时,两个单机UPS的输出功率具有同样的瞬变并进行一次频率调节(反向或正向调节)。频率调节量也是在几个毫赫兹的数量级。
6 并联冗余UPS系统的故障单机UPS的自动跳机
下面介绍*并机UPS的选择性单机UPS跳机。当单机UPS故障,不能为负载供电时,它必须脱离负载母线。*并机UPS的选择性跳机性能包括如下两个过程:检测单机UPS故障和使该单机UPS从负载母线上断开。
(1)不影响关键负载母线电源质量的故障
有些故障不会影响关键负载母线的电源质量,例如某单机UPS因其空气滤清器堵塞引起过温,因此不能继续工作,必须从负载母线上断开,原来由此故障UPS承担的负载可以由其他UPS承担。这类故障不会影响关键母线的电源质量,故障UPS从关键负载母线上断开的时间也不是非常紧急。
(2)影响关键负载母线电源质量的故障有些单机UPS的故障会影响负载母线,例如逆变器的元件IGBT短路,将会影响其输出电压,对负载母线电压造成严重影响。对于这种故障应迅速识别并尽快从关键负载母线上断开。
(3)选择性跳机的方法
如负载均分的控制方法一样,每个单机UPS只需要监视自己是否有故障,发现故障后立即从关键负载母线上断开。为了识别单机UPS故障,控制电路检测UPS输出电压和输出电流相对于当前的输出电压和输出电流数据的变化。每个单机UPS的控制器都存储最后5个周波的每相输出电压和输出电流波形。将最后5个周波的输出电压和输出电流的平均值()与当前的电压和电流波形(UN和IN)进行比较,计算电压和电流的增量ΔU和ΔI(ΔI=IN-,ΔU=UN-),然后根据ΔU与ΔI乘积的符号确定是否有故障以及是否需要与负载母线脱离。
7 并联冗余UPS系统的并联台数
采用并联冗余UPS可以得到较高的可用性。一般可采用1+1或N+1并联冗余UPS系统。1+1并联冗余UPS系统可提供比N+1并联冗余UPS更高的可用性,一般用于要求很高的应用中。在需要综合考虑成本、可靠性和扩容性的场合,可选择N+1并联冗余UPS系统。
N+1并联冗余UPS系统的可用性比单机UPS的可用性高。但是,N+1并联冗余UPS系统的并联台数不是越多越好。1+1并联冗余UPS系统的可用性最高,随着并联台数的增加,N+1并联冗余UPS系统的可用性会下降。当并联台数为大于4(3+1)台时,系统可用性将会急剧下降。在实际应用中,随着并联台数(包括蓄电池组)的增加,UPS系统故障率显著增加;系统的成本和维护量也会增加,维护量的增加意味着人为干预增多,因而增加了系统故障的危险。
1.重复季度保养的各项;
2.检查安全阀是否松动,并旋紧,但切勿卸下安全阀;
3.电池组以实际负荷进行一次核对性放电实验,放出额定容量的30%~40%。
三年保养