赛力特蓄电池MF12-17 规格及参数
赛力特蓄电池MF12-17 规格及参数
赛力特蓄电池MF12-17 规格及参数
蓄电池的正确使用和维护:
1、检查蓄电池在支架上的固定螺栓是否拧紧,安装不牢靠会因震动而引起壳体损坏。另外不要将金属物放在蓄电池上以防短路。
2、时常查看极柱和接线头连接得是否可靠。为防止接线柱氧化可以涂抹凡士林等保护剂。
3、不可用直短路试验的方法检查蓄电池的电量,这样会对蓄电池造成损害。
4、普通铅酸蓄电池要注意定期添加蒸馏水。干荷蓄电池在使用之前最好适当充电。至于可加水的免维护蓄电池并不是不能维护适当查看必要时补充蒸馏水有助于延长使用寿命。
5、蓄电池盖上的气孔应通畅。蓄电池在充电时会产生大量气泡,若通气孔被堵塞使气体不能逸出,当压力增大到一定的程度后,就会造成蓄电池壳体炸裂。
6、在蓄电池极柱和盖的周围常会有黄白色的糊状物,这是因为硫酸腐蚀了根柱、线卡、固定架等造成的。这些物质的电阻很大,要及时清除。
7、当需要用两块蓄电池串联使用时蓄电池的容量最好相等。否则会影响蓄电池的使用寿命。
温度和浮充电压的变化将给蓄电池带来严重危害,造成蓄电池过量腐蚀、极板过度腐蚀或水分过量流失,从而使寿命锐减或容量陡降。为解决这一关键性问题,必须密切关注蓄电池的温度补偿问题,蓄电池必须与具有温度补偿功能的智能型开关电源配套使用。其实目前大多数智能型开关电源都有温度补偿功能,但由于未引起重视而使该功能长期处于取消状态,造成不必要的损失。
蓄电池应工作在适宜的环境温度下,环境温度对蓄电池的放电容量、寿命、自放电、内阻等方面都有较大影响。开关电源都有电池温度补偿功能,每℃每只蓄电池补偿1~3mV。枢纽楼由于冬季和夏季环境温度在20~25℃之间,蓄电池的温度补偿应该设定为1mV为佳;而对于环境差的模块蓄电池的温度补偿应该设定为3mV,总之,蓄电池的最佳工作环境温度为20~25℃。
开关电源监控模块接入蓄电池的温度传感器应尽可能放置在最接近每组电池温度最高点的地方,建议将其放置在每组蓄电池的中间位置的电池上。当启动电池温度补偿功能之后,浮充电压和均衡电压都按照以下方式进行补偿:
Utc=Un-TC×N(T-20)
其中Utc-经温度补偿后的浮充或均充电压,单位:V;
Un-未经补偿的电压,即开关电源设置的浮充或均充电压,单位:V;TC-在监控模块前面板上设置的温度补偿系数,单位:mV/℃;
N-每组电池的只数,对于48V系统为24节;
T-温度传感器指示的温度(单位:℃)。温度补偿功能的温度有效范围是:10~35℃。
监控模块的面板上有“设定系数”按键,按设定系数按键后,监控模块上的字母数字显示器将显示当前的补偿系数,该值可以通过“增加”、“减小”和“确认”键进行修改,电池温度补偿系数的范围在0.1~5mV/℃。
当监控模块检测到蓄电池的温度与设定的温度相比有差异时,监控模块能够根据上述方程式设定的反比例关系对输出电压进行调整,浮充电压会自动跟随电池温度变化而进行补偿,温度高浮充电压低,温度低浮充电压高。所以,由于蓄电池独有的特性,应采取相应的维护管理措施,解决电池温度补偿问题,是根据环境温度对蓄电池电压补偿最简单有效的方法,也是提高蓄电池使用年限,保障供电安全的最佳选择。
11 VRLA的核对性放电试验和容量放电试验
(1)蓄电池的核对性放电试验
蓄电池端电压的测量不能只在浮充状态,还应在放电状态下进行。端电压是反映这种电池工作状况好坏的一个重要参数。浮充状态下进行电池端电压测量,由于外加电压的存在,测量出的电池端电压易造成假象。即使有些电池反极或断路也能测量出正常数值,实际上是外加电压在该蓄电池两端造成的电压差。当市电停电时,蓄电池若有容量有问题则放电时间很短,若电池开路停电时通信设备直接掉电,造成通信阻断故障。所以每年定期对电池进行一次带载核对性放电试验,让蓄电池内部有效物质充分的进行一次活化,以防止蓄电池内部硫酸铅形成钝化。根据环境温度和负载电流的大小,计算出蓄电池的实际容量,放出蓄电池实际容量的30%~40%,并利用电池监控系统对蓄电池组进行检测截图打印存档,同时检查蓄电池连接条接触情况,对蓄电池连接条有松动的进行紧固,确保蓄电池组安全稳定地运行。
(2)蓄电池的容量放电试验
目前各通信电源直流供电系统中,开关电源与蓄电池为并联浮充供电,蓄电池组无法脱离供电系统,无法单组做蓄电池容量试验。
根据维护规程每三年对蓄电池组进行容量试验,蓄电池使用6年后每年进行容量试验一次,电池组放出容量的80%以上合格。
①第一种方法:将直流供电系统中的一组电池组脱离系统,接上智能假负载,调整负载大小使放电电流保持在某值(一般0.1C10放电率),当电池组中某一单体电池的端电压最先到达放电终止电压时,放电测试结束。根据电池组的放电时间和放电电流来计算其容量,然后用备用的开关电源设备对放电后的电池组按0.1C10的充电率进行充电,充电结束后并入直流供电系统。电池组离线式容量试验,测试数据准确,电池组实际容量计算方便,便于了解电池组实际容量。但当该供电系统只剩下一组电池后备,系统备用电池供电时间明显缩短,且不清楚在线电池组是否存在质量问题;尤其使用六年以上的电池组,一旦市电中断,该电池组对通信设备放电保障风险系数增大。所以用此种方法对电池组进行容量试验时,要求油机发电机组必须处于最佳工况状态下,以确保发电机组、开关电源等设备正常运行。
放电结束后的电池组充满电后再并入供电系统,此时与在线电池组间存在电压差,若操作不当将引起开关电源对并入的电池组进行大电流充电,产生火花,易发生安全事故。为了解决打火花问题,必须调整开关电源输出电压,然后与充满电的电池组电压相等后进行并联浮充。
该放电方式操作难度偏大,既要脱离电池组的正极电源线,又要脱离电池组的负极保险,尤其是脱离电池组负极保险时需要特别小心并做好绝缘处理,操作不当引起负极短路,将造成系统供电中断和人身安全事故的发生。同时放电电池组通过假负载以热量形式消耗,浪费电能,增大了机房空调的制冷时间,影响机房设备运行环境,需要维护人员时刻守护,以免假负载高温引发通信供电设备故障。