- 发布
- 北京欧普兰科技有限公司
- 电话
- 010-88116820
- 手机
- 15810862528
- 发布时间
- 2020-05-19 10:34:38
T-coil 已经极大的提升了工作带宽, 不过如果结合其他技术还能再次进行带宽提升。因
为对于二阶传递函数的 T-coil, 其输入阻抗是恒定的, 所以能随意在前端输入路径上加串联
电感, 这种用法在下面两种情况下非常有用, 能再次提升带宽。
情况一: 如果一个 mos 电路包含很多个放大 mos 管, 则电路输出往往有一个很大的输
出电容(C1)。
情况二: 对于 ESD 保护电路, 其输入网络必须含有一个大的 ESD 电容。
在这两种情况下,由于大电容存在,在所有频带中,可能前端输出阻抗向后看不到 T-coil
的恒定输入阻抗,造成无法在宽带内完全匹配情况,增益平坦度差,工作带宽变小。
可以串接一个电感 Ls, 进行阻抗匹配转换, 认为是感抗和容抗进行抵消, 让匹配设计中
不受之前大电容影响。
随着数据链路和内存链路的不断发展, 芯片之间的 IO 接口速度已超出 10GB/s。 但信号
带宽受到 IO 电容的严重影响, 为了消除 IO 电容造成的信号损耗, 原始的方案是使用高灵
敏度接收单元或者增添均衡器, 但这样会增加额外电路成本和功耗, 所以降低 IO 电容是一
个研究方向。
IO 电容有多个组成部分, 占比的是 ESD 结构电容(因为要提供满足要求的 ESD 容
限,导致电容较大),为了满足 2KV HBM 和 500V CDM 等 ESD 设计要求, ESD 电容很难做小,
例如, 将其降到 0.4pF 非常困难。
除了 ESD 电容外, 金属走线、 有源器件、 开关等的寄生电容对 IO 电容也有贡献, 因此,
将 IO 电容控制在 1PF 是比较困难的
T-coil 是双端口桥式-T 网络的一种特例。 它有两个互相耦合的电感(两个电感常常对称
设计), 和一个桥接电容组成,设计中还要考虑两个电感的耦合因子、 线上插损等因素。
当某个负载加到 T-coil 电路时, 从节点 1 或 2 处看到的阻抗比较特殊;以及这两个节点
到节点 3(一般连接负载电容的)的传输函数(Vout/Vin)特性也比较有研究价值。
以一个共源级 mos 为例来讲,其输出的负载电容为 CL。当高频时, CL 容抗很小, M1 的
小信号漏流被 CL 基本拉到地, 导致输出电压 Vout 降低, 增益在要求宽频范围内平坦度较
差, 导致较低的工作带宽。
解决思路一: 可以给负载电阻 RD 串联一个 LD(inductive peaking 方案), 如下图(b),
电感的感抗会随频率增加,那么总的串联阻抗(RD jwL)会随频率增加,这样会在频率提升
过程中,迫使大量电流流经 CL,实现增益宽度一致性(增益大小会有所降低),是一种提升
工作带宽方法。
解决思路二: 可以在输出的信号路径中插入一个 T-coil, 如下图(c),下来可以分析在
这种情况下,传递函数(Vout/Vin)是个啥情况。