许多新型装置都受益于实芯互感器,钳形技术的电气技术特性并不能与这些实芯互感器相媲美。但是,现存的机器和建筑设备就无法增加各种实芯装置,因为无法承受系统停机的损失。用新型材料和技术来装备先进的钳形电流互感器,实现了高性能经济核算的状态监控、功率计量和设备管理系统的及时更新。快速发展的节能市场和大型功率测量系统的配置支配着对于高性能且经济合算的钳形互感器的需求。
钳形电流互感器并非新鲜上市,但是这些互感器中所采用的传统技术却表现出众多弊端。这些互感器或者以昂贵的材料制成(如铁-镍合金FeNi),或者性能很差,尤其在线性度和相移方面(比如硅钢FeSi)。新型铁氧体材料具有显著改善的导磁率,终实现了在提供高性能的同时也具有普遍接受的价格。罗果夫斯基线圈(Rogowski Coil)近也具有很大的进展,实现了用于高强度电流的小型、轻型和灵活的互感器,但是需要一些信号适应和标定来将这些特性发挥到。设计和制造工艺方面取得的重要进步降低了成本以及减小了原边电流电缆定位的罗果夫斯基线圈的影响,克服了这些缺点后,Rogowski Coil技术将是一项非常有前景的技术。
技术的多样性反映了近进展很多的应用领域需求的多样化,由此说明多样化系统和基础设施受到成本和环境的影响。在用户和厂商的交流中,常常提到这样的情况:根据UPS的输出容量和所要求的后备时间,需快速、粗略地给出相关电池的配置。此时可用下列方法迅速做出。
1 对于109Ah·块/kVA设计寿命10年的电池
使用时按下列公式计算:
所需电池容量(Ah)=
例如:一台120kVA的UPS,每组电池32块,要求后备时间60min(即1h)。则所需电池容量为
120kVA×109Ah·块/kVA=13080Ah·块,13080Ah·块/32块=409(Ah),即可选12V,100Ah电池4组(32块/组)。注意:实际后备时间不足60min(欠缺一点)。
如果每组33块,则13080/33=396Ah,同样可选12V、100Ah电池4组(33块/组)。注意:实际后备时间超过60min(超出一点)。
如果要求后备时间为30min,则109×120=13080Ah·块,13080/32=409Ah,409/2=205Ah。
由于电池的放电功率与放电时间不是线性的,即不能只简单除以2,还需乘以修正系数,见表1,因此205×1.23=252Ah。即可选12V、65Ah电池4组(32块/组)。注意:实际后备时间超过30min(超出一点)。
如果要求后备时间20min,则409/3=136Ah,还需乘以修正系数,见表1,136×1.41=192Ah,即可选12V、65Ah电池3组(32块/组)。注意:实际后备时间超过20min(超出一点)。
其它情况,以此类推。
2 对于126Ah·块/kVA设计寿命五年的电池
计算方法和需乘以修正系数与前述完全一样,只是要把上式中的109换成126。
如果计算时间是一小时以上,要在按上述计算后再除以一个修正系数,见表2。
例如:前例的后备时间是3h,则109×120=13080Ah·块,13080/32=409Ah,409×3=1227Ah;还需除一个修正系数,1227/1.25=982Ah。
按照能量守恒原理,以上方法对于三相/单相或单相/单相UPS是一样的。如APC的秀康UPS,需正负两组(32块/组)电池,计算方法是一样的。注意“安时·块”的概念。
一般中大功率的UPS所配每组电池都是32块;电池并联数好不要超过4组,以免影响电池组的均流和充电效果。
由上述可见,一般来说,只要记住109(或126)和1.23这三个数字就够用了。
以上是快捷的粗算,不很精确。要想得到精确的结果,应参照电池厂家给出的电池放电特性。深圳市今星光实业公司 闫新华
摘要 通过对不同极板厚度、不同电解液比重的铅酸蓄电池的初期容量、国标循环寿命、不同限压值的恒流限压充电对电池循环寿命的研究,以及对寿命终止电池的解剖分析,得出结论:适当增加正极板厚度,降低电解液比重,选择佳的恒流限压充电的限压值,能够提高电池的循环寿命。
近年来,随着欧美等老牌电池生产企业巨大的成本压力及国际铅价的持续上涨,使得这些国际知名的公司都纷纷在中国建厂,或者干脆在中国购买电池进行贴牌销售。这种趋势在带给国内企业可观利润的同时,也因国内部分企业的产品质量问题给自身带来了毁灭性的打击。而国内部分企业电池产品质量与国外知名企业的显著差别,主要就是电池使用寿命尤其是循环使用寿命达不到要求。
铅酸蓄电池的寿命终止多因容量不足,而对于蓄电池来说,其循环寿命更是其众多指标中的关键指标。对于阀控铅酸蓄电池,延长电池循环寿命的公认措施是铅膏配方中增加长效添加剂、采用高锡低钙合金、极板高温固化、提高装配压力等等。
但即使全部采取以上措施,生产出的电池寿命也不一定能达到国外电池寿命的水平。尤其是随着成本压力的增加,很多国内中小企业为了降低生产成本,提高电池的大电流放电性能,不断地降低电池的极板厚度和增加电解液的比重,这对于电池的整体性能,尤其是循环性能来说无疑是杀鸡取卵的方法。
本项目的研究重点即是在上述各项延长电池循环寿命的措施都采取的情况下,重点研究电池正负极板厚度、电解液比重和不同充电条件对电池初期容量、国标循环寿命和1h率1%DOD循环寿命的影响。
1 试验内容
针对以上研究内容,采用两种极板厚度的电池结构,配合4种电解液比重,制作12V、7Ah电池以进行各项性能试验。
1.1 电池制造