安耐威铅酸蓄电池AFM-C1238 12V38AH长寿命
安耐威铅酸蓄电池AFM-C1238 12V38AH长寿命
蓄电池的性能优势:
高可靠的工业保障 从内至外的优良设计
灰色外壳,体积小,重量轻,能量密度高,输出功率大
精密技术生产,使用寿命长,自放电率极低(小于3%每月)
特殊配方的铅钙合金及电解液,品质稳定,不污染环境
高压缩玻璃棉吸液式(AGM)技术
适用在高功率的精密机械及高性能的UPS不断电系统
深循环电池为太阳能和风能存储系统设计,针对逆变器和一些应用程序经常需要深度放电。用于循环使用寿命.
蓄电池的均充电:
1.在电池组的各单体电池上附加一个并联均衡电路,以达到分流的作用。在这种模式下,当某个电池首先达到满充时,均衡装置能阻止其过充并将多余的能量转化成热能,继续对未充满的电池充电。该方法简单,但会带来能量的损耗,不适合快充系统。
2.在充电前对每个单体逐一通过同一负载放电至同一水平,然后再进行恒流充电,以此保证各个单体之间较为准确的均衡状态。但对蓄电池组,由于个体间的物理差异,各单体深度放电后难以达到完全一致的理想效果。即使放电后达到同一效果,在充电过程中也会出现新的不均衡现象。
3.定时、定序、单独对蓄电池组中的单体蓄电池进行检测及均匀充电。在对蓄电池组进行充电时,能保证蓄电池组中的每一个蓄电池不会发生过充电或过放电的情况,因而就保证了蓄电池组中的每个蓄电池均处于正常的工作状态。
4.运用分时原理,通过开关组件的控制和切换,使额外的电流流入电压相对较低的电池中以达到均衡充电的目的。该方法效率比较高,但控制比较复杂。
5.以各电池的电压参数为均衡对象,使各电池的电压恢复一致。均衡充电时,电容通过控制开关交替地与相邻的两个电池连接,接受高电压电池的充电,再向低电压电池放电,直到两电池的电压趋于一致。
该种均衡方法较好的解决了电池组电压不平衡的问题,但该方法主要用在电池数量较少的场合。
6.整个系统由单片机控制,单体电池都有独立的一套模块。模块根据设定程序,对各单体电池分别进行充电管理,充电完成后自动断开。
该方法比较简单,但在单体电池数多时会使成本大大增加,也不利于系统体积的减小。
在高频机出现不久后,模块化UPS就应运而生,模块化UPS从理论上来说也是高频机的一种,只是其结构与普通高频塔式机型差别较大。模块化UPS对并联控制技术要求比较高,早期的模块化UPS故障率偏高,每次维修更换模块成本不低,因此选择模块化UPS的用户很少,不是市场的主流。但随着并联控制技术逐渐成熟,模块化UPS可靠性逐渐提高,而其高效率和高可用性的特点逐渐被市场认可,尤其是华为携模块化UPS重现UPS市场,迅速带动模块化UPS高速发展,其市场占有率直线上升,特别是在IDC信息机房、金融等领域,已和高频塔式机不分上下。
当然,高效只是影响UPS不间断电源内部温度的主要因素之一,还要综合考虑机器本身的散热设计。但是,效率越低往往意味着需要在成本、可靠性或工作温度等方面作牺牲,以保障内部温度在可接受的范围之内。
要求新建数据中心PUE值达到1.5以下,原有改造的数据中心PUE值下降到2以下;而UPS系统的损耗是数据中心能耗的主要组成部分,大约占到数据中心能耗的6%~10%,数据中心要做到较低PUE,必须选择运行效率更高的UPS.给出了不同类型UPS对PUE贡献的差异。