证实。20世纪90年代,KubaT等发现在厌氧/缺氧运行的环境条件下,可以富集一种能够以硝酸盐或者氧气为电子受体的兼性厌氧微生物,该微生物在反硝化的同时出现微量吸磷反应,被定义为反硝化聚磷菌。
关于聚磷菌反硝化除磷的原理,目前通常流行两种观点:
①一类PAO观点,该观点认为在传统生物除磷系统中只存在一类聚磷菌,其反硝化脱氮除磷的强弱取决于周围环境的诱导作用,如果聚磷菌受到周围环境厌氧/缺氧的诱导作用,则表现出反硝化除磷性能,所受到的诱导作用越强烈其反硝化除磷作用越明显;反
BCFs工艺是荷兰代尔夫特工业大学
产原料合成shuihejing产品,该方法具有投资少、产品收率高、能耗和成本低等优点,国内外普遍采用该方法制备shuihejing。
目前国内有通过纳滤膜工艺处理shuihejing生产废水的研究实践,但是采用传统生化处理工艺的实际应用却极少,这主要因为酮连氮法产生的废水不仅含盐量高,而且废水中还含有肼类、丙酮、丙酮连氮以及其他衍生物等,污染物成分复杂、生物毒性强、COD
乳液聚合丁苯橡胶装置生产过程中,使用过氧化氢对孟烷氧化剂-磷酸钾电解质体系,虽然生产效率比较高,但是其排放的废水中含有大量的磷物质,而且对其处理要求较高。磷酸钾是低温乳液聚合反应为主要的电解质,有利于提升反应质量和效果,但是在反应结束之后会随着废水排放到总废水池中,导致废水总磷含量上升,超过国家标准。
2.3 废水COD影响因素
在乳液聚合丁苯橡胶装置的废水池中,在单体回收以及凝聚单元废水池中的COD含量较高,这是因为废水中含有大量的苯乙烯,致使废水中COD含量升高。
2.4 废水电导率影响因素
在生产过程中,会在装置中添加几十种助剂,且其中含有大量的钾、钠等离子,导致废水电导率增高,严重影响了水体中微生物的正常生长。为有效控制废水电导率,需要减少对助剂的使用量,尤其是钾皂、氢氧化钾等应用量较大的助剂。
3、废水达标控制措施
3.1 应用新型环保助剂,降低废水总氮含量
随着科学技术的逐步发展,环保型的絮凝剂EEDC逐渐在丁苯橡胶装置生产过程中得到广泛应用,有效降低了废水中总氮的含量,逐渐达到了排放标准。在EEDC中含有大量的环氧氯丙烷以及二jiaan共聚物,没有CN-物质,容易被氧化分解,所以极大程度上降低了废水中总氮的含量。其中,EEDC絮凝剂在凝聚单元的应用效果佳。
3.2 应用无磷电解质,降低废水总磷含量
在装置生产过程中使用的磷酸钾电解质是导致废水中总磷含量较高的主要因素。因此,为从根本上降低废水总磷含量,需要逐渐采用无磷电解质KCI逐渐替代原有的电解质,不仅可以有效降低废水中的磷物质排放量,而且还可以优化废水处理工艺,有效控制废水处理费用,提升综合生产效率。表2为某化工厂进行无磷电解质工业化改造之后某一时间段内废水总磷含量数据统计。
浓度较高、处理难度较大。鉴于此,四川某公司拟采用“蒸发回收副产品+传统生化法”工艺处理该类型废水,目前采用五效蒸发器已成功回收到高纯度的工业氯化钠副产品,现对蒸发冷凝液进行中试。
蒸发冷凝液无法直接达到排放标准,废水中依然存在大量肼类及氨氮等污染物,对于冷凝液的处理仍然是一个难题。目前国内外还没有对于冷凝液的生化处理进行研究,因此笔者主要论证采用传统处理方法的可行性及设计要点,旨在为该类型废水处理提供一种新的解决思路。
1、试验材料与方法
1.1 试验规模及废水水质
中试装置采用24h连续运行的方式,设计规模为0.5m3/h,每天的试验原水水样为12m3,水样取自五效蒸发器装置出水冷凝水罐,并定时用槽罐车运送。按照各进水监测指标保证率为90%设计进水水质,同时根据要求,处理后出水水质需满足回用要求,故终确定中试装置设计进、出水指标如下:进水pH值为9~11、COD≤880mg/L、NH3-N≤130mg/L、SS≤5mg/L、shuihejing≤170mg/L、温度≤50℃;出水pH值为6~9、NH3-N≤5mg/L、COD≤50mg/L。
1.2 中试流程及设计参数
本中试系统中,废水首先通过Hi-SOT氧化塔,利用臭氧的强氧化作用,在催化剂作用下分解水中有机物和总肼,降低总氮和氨氮浓度,并降低废水中肼类物质的毒性作用。Hi-SOT氧化塔出水经中间水池过渡后进入水解酸化池,利用厌氧和兼氧菌的水解酸化作用进一步提高废水的可生化性。水解酸化池出水进入A/O池,首先利用反硝化细菌将硝态氮转化为氮气,从而达到脱氮的目的,在有氧条件下,将污水中的有机物降
Kluyver生物技术实验室基于UCT工艺而开发,主要通过厌氧、缺氧交替的环境条件强化反硝化聚磷菌的培养,目前已应用于工程实践中。该工艺大的特点是由5个生物反应池与3套回流系统组成,相比
在Dephanox工艺中,污水上清液依次进入厌氧段、硝化段、缺氧段和后置快速曝气段,从而完成COD的去除和脱氮除磷。在工艺运行过程中,污水首先进入厌氧段,在该阶段污水与从终沉池回流的污泥充分混合,反硝化聚磷菌在厌氧条件下利用聚磷水解所释放的能量,将污水中的溶解性有机物转化为PHB而储存于体内,同时完成释磷的作用。污水随后进入中沉池快速沉淀,沉淀污泥超越中间硝化池直接进入缺氧池,富含氨氮、磷的上清液则进入中间硝化池。
在硝化池内,污水中的氨氮在硝化细菌的作用下转化为硝酸盐,完成硝化作用,然后经简单沉淀,上清液进入后置缺氧池。上清液与超越回流污泥在缺氧池内充分混合,反硝化聚磷菌利用体内的PHB为电子供体、污水中的NO-3为电子受体,在缺氧的条件下完成反硝化作用,同时在该过程中DPB超量吸磷,完成氮与磷的同步去除。随后污水进入后曝气池,剩余物质经后曝气池的吹脱和氧化作用被进一步去除。混合液进入中沉池,沉淀后上清液排放,沉淀污泥部分回流,其余以剩余污泥的形式排放。
在该工艺中,由于反硝化聚磷菌经过厌氧段后直接进入缺氧段,没有经历好氧段,因此其体内储存的PHB完全用于脱氮与除磷,节省了碳源。同时由于设置了后曝气,当系统内电子受体不足时,通过投加一定量有机物仍能获得较好的除磷效果。但是该工艺后置好氧池,而反硝化聚磷菌是厌氧型细菌,后曝气会对其活性产生一定的抑制作用。
2.2.2 A2N-SBR工艺
A2N-SBR双污泥工艺于1996年由Kuba等人提出,由2个独立的A2-SBR反应器与N-SBR反应器组成,运行过程中通过控制A2-SBR反应器内交替的厌氧/缺氧环境条件富集反硝化聚磷菌,在N-SBR反应器内通过控制好氧环境条件富集硝化细菌。由于在运行过程中避免了菌种的相互影响,可以为反硝化聚磷菌与硝化细菌提供适宜的生长条件,其工艺流程如图3所示。
UCT工艺增加了1个接触池和1个混合池。接触池设置于厌氧池与缺氧池之间,二沉池回流污泥与厌氧池出水在该池内充分混合,通过控制缺氧环境条件使反硝化细菌利用厌氧池剩余的有机物进行反硝化,同时去除二沉池回流污泥中的硝酸盐。混合池设置于缺氧池与好氧池之间,主要功能是脱氮,通过控制低氧环境条件完成同步硝化反硝化,降低出水中的氮。
与传统工艺相比,BCFs的工艺优点在于5个反应池独立运行,结合其特点控制适宜的运行条件,可使每个反应池的去除效能达到大化。而反应池数量多,占地面积大,系统控制繁琐一直是该工艺推广应用的争议点。
2.2 双污泥工艺
2.2.1 Dephanox工艺
1992年,WannerJ等率先提出以厌氧污泥中聚-β羟基丁酸(poly-β-hydroxybutyrate,PHB)为碳源的反硝化除磷工艺,并取得了较好的脱氮除磷效果。随后有研究者提出了具有硝化和反硝化除磷的双污泥工艺,即Dephanox工艺,其流程如图2所示。
之,若周围环境没有厌氧/缺氧的运行方式,则不表现反硝化除磷现象。
②分类PAO观点,该观点认为传统聚磷菌分为两类,一类在生物除磷反应过程中只能以氧气作为电子受体,另一类则既能以氧气又能以硝酸盐为电子受体,在以硝酸盐为电子受体进行反硝化的同时则表现出吸磷作用。
针对两种假说,目前普遍接受和认可的是分类PAO观点。据此以硝酸盐为电子受体对反硝化聚磷菌开展了大量研究,Vlekke等分别就厌氧/缺氧污泥系统与生物膜反应器进行了验证性研究,结果表明通过厌氧/好氧交替的运行方式可以富集反硝化聚磷菌,该反硝化聚磷菌以硝酸盐为电子受体,在反硝化的过程中完成吸磷。王琦等采用实际生活污水对反硝化聚磷菌的反硝化除磷现象进行了验证性研究,结果表明硝酸盐可以作为电子受体完成反硝化除磷,但其吸磷效率较以氧气为电子受体要低。赵伟华等采用双污泥SBR工艺研究