英利特蓄电池授权UPS不间断直流逆变IT机房英利特蓄电池授权UPS不间断直流逆变IT机房英利特蓄电池授权UPS不间断直流逆变IT机房英利特蓄电池授权UPS不间断直流逆变IT机房英利特蓄电池授权UPS不间断直流逆变IT机房英利特蓄电池授权UPS不间断直流逆变IT机房
蓄电池报价参数UPS备用时间的长短是由什么决定的? 是由UPS的储能装置决定的,现在的UPS一般都用全密封的免维护铅酸蓄电池作为储能装置,电池容量的大小由“安时数(AH)”这个指标反映,其含义是按规定的电流进行放电的时间。相同电压的电池,安时数大的容量大;相同安时数的电池,电压高的容量大,通常以电压和安时数共同表示电池的容量,如12V/7AH、12V/24AH、12V/65AH、12V/100AH。 后备式UPS一般内置4AH或7AH的电池,其备用时间是固定的;在线式与在线互动式UPS有内置7AH电池的标准机型,也有外配大容量电池的长效机型,用户可以根据需要实现的备用时间而确定配备多大容量的电池。 蓄电池是UPS的重要组成部分,占有很大的**比重,并且其质量的好坏直接关系到UPS的正常使用,所以应慎重选择有的正牌蓄电池。重复季度所有保养、检查
利瑞特(LEERT).,公司生产利瑞特牌蓄电池,共有7个系列。产品主要应用于电力、电信、金融、铁路、*、**、厂矿、太阳能、船舶、柴油机启动、汽车、核电站和科研机构等系统。
佛山市利瑞特蓄电池有限公司;一家从事电源产品的研究、开发与生产的集团化企业。集团公司旗下企业总注册资金达一亿元,总投资额达三亿元,目前公司已在广东、河南、湖南建立三个*性生产基地,佛山工厂占地面积五万平方米,河南工厂占地面积七万平方米,湖南工厂占地面积二十万平方米。 目前公司的主要电源产品有阀控式密封铅酸蓄电池、胶体蓄电池、太阳能蓄电池、电动车蓄电池、太阳能锂电池、太阳能光伏照明产品等十多个品牌系列的电源产品,产品****。
公司高度关注产品品质的控制,从原材料到成品都实行严格的质量把关,确保每一个电池出厂时都能达到较高的质量性能标准
公司努力提升企业的社会使命感,成立初始就将保护环境、节能减排和预防污染作为公司发展的长期战略之一,并通过了**环境管理体系ISO14001认证。
公司尤其重视客户满意度的建设,视持续的技术创新、严格的质量控制和满足客户多样化需求为企业发展的命脉。
利瑞特蓄电池报价参数UPS备用时间的长短是由什么决定的? 是由UPS的储能装置决定的,现在的UPS一般都用全密封的免维护铅酸蓄电池作为储能装置,电池容量的大小由“安时数(AH)”这个指标反映,其含义是按规定的电流进行放电的时间。相同电压的电池,安时数大的容量大;相同安时数的电池,电压高的容量大,通常以电压和安时数共同表示电池的容量,如12V/7AH、12V/24AH、12V/65AH、12V/100AH。 后备式UPS一般内置4AH或7AH的电池,其备用时间是固定的;在线式与在线互动式UPS有内置7AH电池的标准机型,也有外配大容量电池的长效机型,用户可以根据需要实现的备用时间而确定配备多大容量的电池。 蓄电池是UPS的重要组成部分,占有很大的**比重,并且其质量的好坏直接关系到UPS的正常使用,所以应慎重选择有的正牌蓄电池。重复季度所有保养、检查
什么是「正确的」充电电流?
这里先做一个提示:答案可能会有三个。
在分析USB充电之前,你首先需要一个能用来量测Vbus电流的系统,并量测D+和D-接脚上的电压。这可透过建置能将周边和主机都插上的电路板,并将其D+、D-和Vbus线路露出来以进行分析。
现在通过一个经由转接板(interposer)连接的设备来评估充电电流。让我们假设,我们都很聪明地知道原厂充电器施加在D+和D-上的电压,同时重新建立一个独立的充电电路来证实我们的猜测。然後,我们施以正确的电压,就与原厂充电器施加在D+和D-上的电压相同,但是充电电流与我们先前的结果并不一样。
现在,让我们来检查功率 ─ 并不是看装置是否插好电,而是看功率级别。
电池的功率级别在充电中扮演了重要角色。我们许多从事手机设计的人都知道,*放电的锂离子电池在真正开始充电前,需要先慢慢地进行细流(trickle)充电。
此情况当然也会让你搞不清楚到底有没有取得*的充电电流。插到USB埠的周边装置在充饱电之前,可能会有好几个不同的充电点。通常,它会有一个低充电模式,以供刚才提到细流充电之用。它也可能对何时该对电池正常充电有不同的充电状态。zui後,它可能会有一个电池充饱的充电状态。
因此,你需要观察当电池没电、充电到一半,以及充饱电池等不同期间,充电电流各会是多少。听起来很耗时间?那当然──但这是*了解充电特性的必要之恶。
充电与资料传输有可能兼具吗?
现在我们比较了解消费者的充电器配置,以及如何观察它的充电电流。对许多应用来说(诸如PC、萤幕和扩充基座),你会希望能够快速充电,并具备同时传输资料的能力。
在这方面,市场上仍有许多疑虑,认为可能性不高。理由是基于许多原厂充电器会在USB埠的D+和D-接脚上施加电压的这个事实。由于USB的传统数据通讯是以USB 1.1 3.3V和USB 2.0 400mV为基础,由于需要将不同的电压施加在这些线路上,所以不可能同时进行通讯与列举(enumeration)。
但这个规则有一些例外。举例来说,当你*次将装置插入USB埠时,装置会要求你下载特定装置的软体到主机上。有些手机为了同步作业,便会有此要求,因此有助于在通讯时,同时以较高的电流进行充电。因此,对于装置的通讯和充电,装置可透过特定的软体驱动程式来设定限制。
但USB充电并非*不可行,事实上,业界正在努力推动这项工作。USB-IF电池充电规范 1.2修订版(BC 1.2)已经制订完成,以因应数据与充电并行的这项挑战。
BC 1.2是专为统一USB 2.0充电特性的未来应用所制订。它的想法是希望透过一套通用的USB充电规范标准,尽量减少垃圾掩埋场中堆积如山的手机充电器。基于废弃物减量的考量,欧盟已经是此规范的早期采用者。特别是,它承诺将在能传输数据的行动中采用相同的Micro-USB接头。但是,欧盟尚未*采用BC 1.2规范。
BC 1.2规范中包括充电下行埠(CDP)模式,可允许数据传输和较高的充电电流。举例来说,如果,主机或集线器上的D+感测到0.4V至0.8V的电压,那们D-就会以0.5V至0.7V回应。
更多有关调配时序的细节都可在规范中找到。一旦CDP建立好了,周边装置zui高能取得1.5A的电流,并同时传输资料。采用这项技术的装置,包括手机在内,都将会在今年内问世。
USB埠已渗入我们的生活,以作为电源供应之用,但我们必须采取明智策略,才能善加运用这项功能。希望本文关于USB充电的基本介绍能帮助你朝正确的方向发展,而不要重蹈他人曾走错的覆辙。
