- 发布
- 北京速核电子科技有限公司
- 电话
- 010-80799930
- 手机
- 18518079905
- 发布时间
- 2022-11-25 11:53:45
边缘计算的兴起
从那时起,边缘计算能力一直在提高。
2017年,为了扩展低性能的计算设备,Movidius神经计算棒以低于100美元的价格,仅需0.5W的电量便能进行每秒一千亿次浮点计算。
2018年,华为推出了麒麟980处理器,移动边缘计算哪家好,在0.1W的电量下可以完成每秒五千亿次的浮点计算。其他供应商紧随其后。谷歌发布了Edge TPU Units,瑞芯微(Rockchip)公布了RK3399。这两个约每秒能够处理3万亿次浮点计算,成本在100美元左右。
2019年,带有人工智能技术硬件加速的器(特别是神经网络)的特定微型计算机得到普遍使用。所有关键的硬件厂商都陆续发布了AI软件栈的边缘优化版本,这进一步提高了性能。目前,一般使用的AI板有,谷歌的Edge TPU——使用专门的ASIC芯片制作而成用以处理AI的预测推理功能。价格低于100美元的英伟达Jetson Nano 配备了128个英伟达CUDA。瑞芯微发布的 RK3399 Pro——带有神经网络处理器的开发板(其性能甚至略优于英伟达Jetson Nano)。
物联网技术的大幅提高让我们得以发展nBox——这款边缘计算设备不仅能够借助多达12个通道记录高质量音频,并且还可以通过边缘计算实现人工智能。所谓边缘计算,是指大多数处理过程将通过本地设备实现而无需交由云端完成。
边缘计算为什么重要?
边缘计算是一个相对于中心化的云计算的概念。
具备边缘计算能力的设备可以多种多样,如工业电脑(IPC)、网关、可编程逻辑控制器(PLC)都可以成为边缘计算设备,移动边缘计算,这些设备本身需要具备存储和计算能力,内置特定的算法和软件,通讯方式也多种多样。边缘计算设备一侧与直接产生数据的物理设备连通,另一侧则可以将处理过的数据上传到云端。
边缘计算设备往往需要具备较强的数据处理能力。以工业电脑产品为例,移动边缘计算设备,不同型号的尺寸从约电脑主机大小至约手机包装盒大小不一,很新的工业电脑典型配置中已经内置英特尔i7处理器。
边缘计算之所以存在,是因为它承担了与云计算不同的功能。
边缘设备智能化的基本要求
将计算基础架构从数据中心扩展到边缘这一主张,得到了越来越广泛的共识。诸如联邦学习之类的概念,通过共享的预测模型进行协作学习这种方式,将标准集中式机器学习(ML)方法从数据中心转移到手机——在将数据存储到云的需求中,消解了对可实现ML能力的要求。5而各种深度神经网络(DNN),每天都在发展、以更好地赋能基于边缘的处理功能。成功地将智能带到边缘设备也带来了与传统的AI不同的商机——例如:个性化购物,基于AI的助手;或在制造设施中进行预测分析。边缘/雾计算的应用,比如:车辆的自动驾驶;需要复杂反馈机制的机器人技术的远程控制;甚至是使用ML、可更好地管理可再生能源的智能电网终端设备;以及在电网中对本地电能使用进行预测分析。对于此类应用,成功实施AI的主要决定因素包括:成本效益低功耗可重构性/灵活性尺寸