- 发布
- 北京速核电子科技有限公司
- 电话
- 010-80799930
- 手机
- 18518079905
- 发布时间
- 2022-11-29 03:57:39
边缘计算的应用
边缘计算在智慧城市的建设中有丰富的应用场景。在城市路面检测中,在道路两侧路灯上安装传感器收集城市路面信息,检测空气质量、光照强度、噪音水平等环境数据,当路灯发生故障时能够及时反馈至维护人员。在智能交通中,边缘服务器上通过运行智能交通控制系统来实时获取和分析数据,FPGA边缘计算设备,根据实时路况来控制交通信息灯,FPGA边缘计算产品,以减轻路面车辆拥堵等。在无人驾驶中,如果将传感器数据上传到云计算中心将会增加实时处理难度,并且受到网络制约,因此无人驾驶主要依赖车内计算单元来识别交通信号和障碍物,并且规划路径。EdgeOSc 是一种基于边缘计算的面向智慧城市的系统级操作系统,它分为3个部分,底层的数据感知层、中间的网络互联层和顶层数据应用管理层。该操作系统可以有效管理智慧城市中的多来源数据,FPGA边缘计算系统,提高了数据共享的范围和深度,以实现智慧城市中数据价值的大化。
物联网边缘计算的关键
“物联网”一词的一个问题是它的定义很广。耗资数万美元的自动车辆收集万亿字节的数据并使用4G蜂窝网络被认为是物联网。同时,花费几美元的传感器只收集字节数据并使用低功耗广域网(lpwan)也被认为是物联网。
问题是每个人都在关注高带宽的物联网应用,比如自动车辆、智能家居和安全摄像头。这是因为每个人都是消费者,所以写这些东西的人在写C端内容比写B端内容的时候有更多的读者,因为企业物联网与较少的人直接相关,并且可能会有些乏味。
边缘设备智能化的基本要求
将计算基础架构从数据中心扩展到边缘这一主张,得到了越来越广泛的共识。诸如联邦学习之类的概念,通过共享的预测模型进行协作学习这种方式,将标准集中式机器学习(ML)方法从数据中心转移到手机——在将数据存储到云的需求中,消解了对可实现ML能力的要求。5而各种深度神经网络(DNN),每天都在发展、以更好地赋能基于边缘的处理功能。成功地将智能带到边缘设备也带来了与传统的AI不同的商机——例如:个性化购物,FPGA边缘计算,基于AI的助手;或在制造设施中进行预测分析。边缘/雾计算的应用,比如:车辆的自动驾驶;需要复杂反馈机制的机器人技术的远程控制;甚至是使用ML、可更好地管理可再生能源的智能电网终端设备;以及在电网中对本地电能使用进行预测分析。对于此类应用,成功实施AI的主要决定因素包括:成本效益低功耗可重构性/灵活性尺寸