- 发布
- 北京派客动力科技有限公司
- 电话
- 010-58204501
- 手机
- 18640165288
- 发布时间
- 2022-12-08 13:27:05
数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
数据治理意义
网上都在说大数据时代的数据,价值堪比石油,孤岛平台,所以各行各业都想发挥数据的大价值,但用没经过治理和保护的数据提供服务,就如同空中楼阁,提供的服务是有限的,做出的分析是不准的,是谈不上赋能的。遗憾的是,无论是否意识到了数据治理和数据安全的重要性,孤岛平台,多数人依然会选择把关注点和投入放到数据服务上,因为服务(赋能)有亮点,能出彩,看得见、也摸得着。“万丈高楼平地起,一砖一瓦皆根基。”小学生都明白的道理,成年人如何不懂,只是认知不够。
数据治理数据使用场景
场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,数据孤岛平台,例如数据脱敏,同一数据域在不同场景下的脱敏规则等。
真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,市数据孤岛平台,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。