- 发布
- 杭州微耘网络科技有限公司销售部
- 发货
- 3天内
- 电话
- 13386531520
- 手机
- 13386531520
- 发布时间
- 2023-12-25 09:32:59
对话领域则需要批量的意图语料。特征提取:特征的提取是为了方便进行分类计算,每一个特征都具备一定的权重,表明它的权值。通过特征的权值,就能够确定句子属于哪一个类别。这里我们将每一个字作为一个特征,1/(字出现的总次数)作为权值,并构建字典。模型准备:模型准备需要的是建立分类模型。这里我们通过给每一个特征赋予一个得分,然后将句子中每一个字的特征得分进行相加,然后就可以得到句子在某一个类别下特征的总得分,从而能够对句子进行分类。训练模型:在完成特征任务后,接下来就是选择合适的分类器进行训练了,因为意图识别可以看作是一个多分类任务,所以通常可以选择SVM、决策树等来训练分类器。完成以上工作后基本上一个意图识别分类模型就建立好了,接下来就是对已识别语句的实体进行抽取。实体抽取(entityextraction):用于提取用户对话中所提供的和意图相关的参数(实体),例如:时间、地点等。要想实现实体抽取,主要分为两步:系统分词:现在都有一些开源的分词工具